When Does a Platform Create Value by Limiting Choice?

Direct v. Indirect Network Effects

Ramon Casadesus-Masanell

Hanna Hałaburda

Harvard Business School

November 2010
PLATFORMS (GAME CONSOLES)

- two sides: users and developers

- preference for variety
 - the more games/applications the better (for users)
 - the more users the better (for developers)
 - indirect network effects
THE QUESTION

- Why would a platform limit the number of applications?
 - eg.: Nintendo, iPhone

- explanations:
 - quality control (Zhao)
 - competition on the same side (Halaburda-Piskorski)
 - more choice is bad: distaste for excessive choice (psychology), or cost of evaluating alternatives
This paper

Why would a platform limit the number of applications?

- **direct network effects**
 - the utility of consuming an application increases as other users consume the same application
 - eg. gamers like to play the same games as their friends
 - the model incorporates both indirect and direct network effects

(only the user’s side is modeled)
PREVIEW OF THE RESULTS

EQUILIBRIUM PROBLEMS

- **commons** problem: socially efficient consumption may not be an equilibrium
- **equilibrium selection** problem: multiple equilibria of different efficiency
- **coordination** problem: difficulty to consume the same applications if users lack perfect foresight

The platform can alleviate these problems by limiting the number of applications available
THE MODEL

- standard preference for variety (Dixit Stiglitz, 1979)

\[u = \left(\sum_{a \in A} (x_{ka})^{1/R} \right)^R \]

- \(u \) consumption utility
- \(a \in A \) an application from the set of all \(A \) applications
- \(x_{ka} \) consumption of application \(a \) by user \(k \) (time)
- \(1 \leq R < 2 \) preference for variety (\(R = 1 \) no preference for variety)
THE MODEL: introducing direct network effects

- consumption complementarity via α

$$u = \left(\sum_{a \in A} (x^k_a)^{1/R} \right)^R + \alpha \sum_{a \in A} \left(x^k_a \sum_{l \neq k} x^l_a \right)$$
THE MODEL: introducing direct network effects

- consumption utility

\[u = \left(\sum_{a \in A} (x_k^a)^{1/R} \right)^R + \alpha \sum_{a \in A} \left(x_k^a \sum_{l \neq k} x_l^a \right) \]

- net utility

\[U = \left(\sum_{a \in A} (x_k^a)^{1/R} \right)^R + \alpha \sum_{a \in A} \left(x_k^a \sum_{l \neq k} x_l^a \right) - p \cdot \sum_{a \in A} 1(x_k^a) \]

\[\sum_{a \in A} x_k^a \leq X \]

- \(p \) price per application
- \(X \) time budget
THE GAME

\[U = \left(\sum_{a \in A} (x^k_a)^{1/R} \right)^R + \alpha \sum_{a \in A} \left(x^k_a \sum_{l \neq k} x^l_a \right) - p \cdot \sum_{a \in A} 1(x^k_a) \]

- \(N \) users simultaneously choose how much to consume each of the \(A \) applications supplied, \(x^k_a \) for \(k = 1, \ldots, N \) and \(a = 1, \ldots, A \) (\(A \) is “large”) \(\implies \) two stage game
 - users decide (simultaneously) which applications to purchase at price \(p \)
 - users decide (simultaneously) how to allocate their time budget \(X \) across the allocations they have purchased

- we look for SPNE in pure strategies
- everything exogenous, except for consumption levels

Ramon Casadesus-Masanell, Hanna Hałaburda

Indirect v. Direct Network Effects
EQUILIBRIA: pure direct network effects

- consumption complementarity only: $R = 1$ and $\alpha > 0$

$$U = \sum_{a \in A} x_a^k + \alpha \sum_{a \in A} \left(x_a^k \sum_{l \neq k} x_a^l \right) - p \cdot \sum_{a \in A} 1(x_a^k)$$

Proposition

In any equilibrium only one application is consumed in the market.

I.e., every user consumes one application, and all users consume the same application.
EQUILIBRIA: pure indirect network effects

- preference for variety only: \(R > 1 \) and \(\alpha = 0 \)

\[
U = \left(\sum_{a \in A} \left(x^k_a \right)^{1/R} \right)^R - p \cdot \sum_{a \in A} 1(x^k_a)
\]

- whatever number of games the user purchases in equilibrium, he will consume equal amount of each of them \(\Rightarrow \) balanced equilibria

Proposition

Let \(p > 0 \). There is a finite number \(Q_I = \left(\frac{(R-1)X}{p} \right)^{\frac{1}{2-R}} \), such that a user does not want to consume more applications than \(Q_I \).

- for non-trivial results, consider \(Q_I > 1 \)

- for \(p = 0 \), the number of applications consumed is bounded only by \(A \)
in any equilibrium all users consume the same applications, due to consumption complementarity (direct network effect)

we focus on balanced equilibria

net utility of a user if Q applications were consumed in a balanced equilibrium (hypothetically)

$$V(Q) = Q^{R-1}X + \alpha \frac{X^2}{Q}(N - 1) - pQ$$
BALANCED EQUILIBRIA: indirect and direct network effects

\[V(Q) = Q^{R-1}X + \alpha \frac{X^2}{Q}(N - 1) - pQ \]

- shape of \(V(Q) \) is driven by the tradeoff between two forces
 - the benefit from product variety (\(R \))
 - the benefit from using the same applications as other users (\(\alpha \))
PROPERTY OF $V(Q)$

- let $\hat{Q} = \max \left\{ 1, Q \text{ such that } \frac{dV}{dQ} = 0 \right\}$

Remark

$\hat{Q} < Q_I$
Proposition

There always exist balanced equilibria with $Q_{DI} = Q_I$. Moreover, there is $Q^o < Q_I$ such that any $Q \in [Q^o, Q_I]$ characterizes balanced equilibria.

Proposition

There exist parameter values such that $Q_{DI} = 1.
EQUILIBRIA

Proposition

When there exist multiple balanced equilibria with different values of Q_{DI}, equilibria with a smaller Q_{DI} Pareto dominate equilibria with larger Q_{DI}.
PROBLEMS WITH EQUILIBRIA

1. **commons** problem: when \(\hat{Q} > 1 \) is socially optimal, it is not equilibrium

2. **equilibrium selection** problem: multiple equilibria of different efficiency

- Let \(Q^{**} = \arg \max V(Q) \), socially optimal \(Q \)
- \(Q^{**} < Q_I \)

Proposition

The platform creates value by limiting \(A \) below \(Q_I \) and above \(Q^{**} \).
CONCLUSIONS

Why would a platform limit the number of applications?

- eg.: Nintendo, iPhone

EQUILIBRIUM PROBLEMS

- perfect foresight, under both direct and indirect network effects
 - commons problem
 - equilibrium selection problem
- no foresight, under direct network effects
 - coordination problem

The platform can alleviate these problems by limiting the number of applications available.