Career Concerns and Career Choice

Marc Blatter1 Andras Niedermayer2

1Department of Economics, University of Bern
2Kellogg School of Management, Northwestern University

NET Institute Conference, May 2009
Motivation

“Nothing will ever become of you, Einstein!” – quote attributed to a teacher of Albert Einstein. People are better informed about their own talent than others.

“A doctor’s reputation is made by the number of eminent men who die under his care.” – George Bernard Shaw. Reputation has a different effect in high and low visibility jobs; examples of high visibility (performance observed by everyone) vs low visibility (performance observed by current employer):

- open source versus closed source software development
- CEOs of publicly listed companies with large media exposure versus CEOs of firms funded by private equity
- academia (publications publicly visible) versus private industry
- politicians in federal and state versus local governments
Main Result

Questions:

- Do workers exert more effort in high visibility jobs or in low visibility jobs? They may exert less effort in high visibility jobs.
- Do firms invest in more general human capital in high or low visibility jobs? Possibly more in high visibility jobs.
- (Do workers exert more effort in jobs with performance based payments or with fixed wages? (conjecture)) Possibly more in fixed wage jobs.
- Are workers willing to incur costs to participate in high visibility jobs? Yes.

Basic Intuition: career choice effect: more effort and choice of high visibility job are substitutes for signaling high ability; the latter may crowd out the former.
Related Literature

- Career Concerns: Fama (80), Holmstrom (82), Gibbons and Murphy (92), Dewatripont, Jewitt and Tirole (99), ...
- Human Capital: Becker (64), Acemoglu and Pischke (98), ...
- Information Disclosure: Mukherjee (08a,b), Bar-Isaac, Jewitt and Leaver (07)
- Informational Advantage of Current Employer: Waldman (84), Greenwald (86), Hermalin (02), Li (07)
- Career Concerns in Open Source: Johnson (02), Lerner and Tirole (01), Lee, Moisio, and Weiss (03), Leppamaki and Mustonen (03), Spiegel (05)
- Reputational Concerns of Politicians: e.g. Suurmond, Swank and Visser (04)
Basic Model

- two periods
- competitive industry of employers (zero expected profits)
- two types of workers:
 - fraction λ: talented (T), probability of success $p(e)$
 - fraction $1 - \lambda$: untalented (U), probability of success 0
- worker observes signal about ability, $\sigma \sim G_T, G_U$, monotone likelihood ratio property; implies posterior probability of being talented η (most of paper: distribution with two mass points η_1 and η_2)
- first period profits: high visibility π_s^s, π_f^s
 - low visibility π_s^f, π_f^f
- net present value of second period expected productivity Π_T and Π_U
Timing

1. period:
 1. Employee observes private signal σ about his talent.
 2. Employee chooses either a high or a low visibility job.
 3. [Employee chooses effort e.] [The employer invests in human capital and thereby increases second period productivity.]
 4. The probability of success is $p(e)$ for talented and 0 foruntalented workers.
 5. Success or failure are observed by the current employer for low visibility jobs and by all employers for high visibility jobs.

2. period: outside offers and renegotiation; for low visibility job bargain about surplus: employee gets α, employer $1 - \alpha$ of surplus (Nash bargaining solution)
Outcome Basic Model

for $p = 1$

separating equilibrium: low visibility $\eta = \eta_1$, high visibility $\bar{\eta} = \eta_2$

($\eta < \bar{\eta}$)
Effort

probability of success $p(e)$ depends on effort e ($p' > 0$, $p'(0) = \infty$, $p'(\infty) = 0$, $p'' < 0$, and $p(0) > 0$)

effort relevant utility in high visibility job:

$$\bar{U}(e, \hat{e}) := \eta p(e) \Pi_T + (1 - \eta p(e)) \Pi_\bar{F}(\hat{e}) - e,$$

where \hat{e} is firms’ expectations of equilibrium effort and

$$\Pi_\bar{F}(\hat{e}) = E[\Pi | \bar{F}, \hat{e}] = \frac{(1 - p(\hat{e}))\eta}{1 - \eta p(\hat{e})} \Pi_T + \frac{1 - \eta}{1 - \eta p(\hat{e})} \Pi_U$$

effort relevant utility in low visibility job:

$$\underline{U}(e, \hat{e}) := \eta p(e)[\alpha \Pi_T + (1 - \alpha) \Pi_\bar{F}(\hat{e})] + (1 - \eta p(e)) \Pi_\bar{F}(\hat{e}) - e,$$
Equilibrium Effort Level

Equilibrium effort levels given by first-order conditions
\[U_e(e, \bar{e}) = 0 \] and
\[U_e(e, e) = 0 \]

\[U_e(e, e) < U_e(e, \bar{e}) \] for all \(e \) implies \(\bar{e} < e \) (in stable equilibria, i.e. \(dU_e(\bar{e}, \bar{e})/d\bar{e} < 0 \) and \(dU_e(e, e)/de < 0 \))
Equilibrium Effort Level

\[\overline{U}_e(e, e) < U_e(e, e) \iff \overline{\eta} \frac{1 - \overline{\eta}}{1 - \overline{\eta} p(e)} < \alpha \eta \frac{1 - \eta}{1 - \eta p(e)}, \quad \forall e \]

for \(\overline{\eta} \approx 1 \): no effort in high visibility job
for \(\eta \approx \overline{\eta} \): more effort in high visibility job
Separating Equilibrium

\[\bar{u}_1 + \bar{U}(\bar{e}, \bar{e}) \bigg|_{\eta=\bar{\eta}} \geq u_1 + U(\bar{e}_d, \bar{e}) \bigg|_{\eta=\bar{\eta}} \]

for the high visibility worker and

\[\bar{u}_1 + \bar{U}(\bar{e}_d, \bar{e}) \bigg|_{\eta=\bar{\eta}} \leq u_1 + U(e, e) \bigg|_{\eta=\bar{\eta}} \]

for the low visibility worker; \(\bar{e}_d, \bar{e}_d \): effort of a high (low) visibility worker when deviating; \(\bar{u}_1, u_1 \): first period utility

Example

\(\pi_s = 5, \pi_f = 4, \pi_s = 1.73, \pi_f = 0.73, \Pi_T = 5, \Pi_U = 0, \bar{\eta} = \frac{9}{10}, \eta = \frac{1}{4}, \) and \(p(e) = 1 - \frac{1}{e^{3/4} + 1}. \) The resulting equilibrium effort level is \(\bar{e} \approx 0.0111792 \) for the high and \(e \approx 0.0119152 \) for the low visibility worker.

\(\Rightarrow e < \bar{e} \) and separating equilibrium
Investment in General Human Capital

- firms invest $i \geq 0$, second period productivity is $\Pi_T(i)$, $\Pi_U(i)$
- $\Delta \Pi(i) := \Pi_T(i) - \Pi_U(i)$ with $\Delta \Pi > 0$, $\Delta \Pi' > 0$, $\Delta \Pi'' < 0$, $\Delta \Pi'(0) = \infty$, $\Delta \Pi'(\infty) < 1$
- prob of success $p = 1$
- prob of performance being publicly observed $\alpha < \bar{\alpha} \leq 1$
- low visibility firms’ profits
 $$-i + (1 - \alpha) \bar{\eta} \Delta \Pi(i)$$
 (high visibility: $\bar{\eta}$, $\bar{\alpha}$ instead of η, α)
Equilibrium Investment Level

First-order conditions

\[(1 - \alpha)\eta \Delta \Pi'(i) = 1\]
\[(1 - \overline{\alpha})\overline{\eta} \Delta \Pi'(\overline{i}) = 1\]

- Becker (64): \(\alpha = \overline{\alpha} = 1 \Rightarrow i = \overline{i} = 0\) (no investment in general human capital)

- Acemoglu and Pischke (98): \(\eta = \overline{\eta}, \alpha < \overline{\alpha} \leq 1 \Rightarrow i > \overline{i} \geq 0\) (positive investment in general human capital)

- \(\eta < \overline{\eta}\) and \(\alpha < \overline{\alpha} < 1\): possibly \(i < \overline{i}\) (non-monotonicity of \(i\) with respect to \(\alpha\); career choice effect)
Discussion

- costs of visibility $\pi - \bar{\pi}$: literally or because of liquidity constraints/risk aversion
- results also hold for multiple visibility levels α_i with $i = 1, ..., N$
Further Research

- further sufficient conditions when career choice effect dominates and when not (and when negligible)
- crowding out of implicit incentives (career concerns) by explicit incentives (performance based pay)
Conclusions

Strong version of main statement: Adding two realistic assumptions

- worker observes initial private signal
- worker can choose high/low visibility job

leads to career choice effect \rightarrow can overturn standard results

- less effort in high visibility jobs
- more investment in general human capital in high visibility jobs

- (crowding out of implicit incentives by explicit incentives)

More subtle version of main statement: career choice effect dampens standard effects