Auctions for Online Display Advertising Exchanges: Approximations and Design

Gabriel Weintraub
Columbia Business School
Joint work with Santiago Balseiro and Omar Besbes

June 7, 2013
NET Institute Conference
James and Heat Assume New Role as Underdogs

By HOWARD BECK
Published: June 12, 2012

OKLAHOMA CITY — In a moment of introspection and thoughtfulness, LeBron James was short-circuited by a short circuit. A slight crackle, then silence as the podium microphone sputtered in mid-sentence.

Web-page

$11 billions in the US!
How should publishers manage this new market?
Challenges/Contributions

1) Model for advertisers’ bidding behavior

Fulfill campaign... subject to budget.
Challenges/Contributions

1) Model for advertisers’ bidding behavior

Fulfill campaign... ...subject to budget.

Dynamic game of incomplete information:
Traditional game theory is intractable and implausible for practical instances.
Challenges/Contributions

1) Model for advertisers’ bidding behavior

Fulfill campaign… subject to budget.

Dynamic game of incomplete information: Traditional game theory is intractable and implausible for practical instances

New tractable and behaviorally appealing equilibrium concept
Challenges/Contributions

1) Model for advertisers’ bidding behavior

Fulfill campaign… ...subject to budget.

Dynamic game of incomplete information:
Traditional game theory is intractable and implausible for practical instances

New tractable and behaviorally appealing equilibrium concept

2) Study publishers’ revenue maximizing problem

Monetize inventory…

1. Allocation
2. Reserve price
3. Information disclosure
Challenges/Contributions

1) Model for advertisers’ bidding behavior

Fulfill campaign... ...subject to budget.

Dynamic game of incomplete information:
Traditional game theory is intractable and implausible for practical instances

New tractable and behaviorally appealing equilibrium concept

2) Study publishers’ revenue maximizing problem

Monetize inventory...

1. Allocation
2. Reserve price
3. Information disclosure

Tool for back-testing and revenue optimization
Advertisers bid Poisson(η)

Publisher

One slot

Max. profit

Alternative Channel

Opp. cost (c)

An advertiser’s type θ is stochastic

Campaign length (s_θ)

Poisson(λ)

2nd price auction with reserve (r)

bids

Advertisers

max utility θ
s.t. budget(b_θ)
Valuation Model

• How do advertisers value users?

Targeting criteria + User Information = Value
Valuation Model

• How do advertisers value users?

• Two-stage independent private value model

1. Participate in auction with probability α_θ

2. Conditional private value drawn from $V_\theta \sim F_{v_\theta}(\cdot)$
Valuation Model

• How do advertisers value users?

1. Participate in auction with probability α_θ

2. Conditional private value drawn from $V_\theta \sim F_{v_\theta}(\cdot)$

• Two-stage independent private value model
Valuation Model

• How do advertisers value users?

1. Participate in auction with probability α_{θ}

2. Conditional private value drawn from $V_{\theta} \sim F_{v_{\theta}}(\cdot)$

• Two-stage independent private value model
Valuation Model

• How do advertisers value users?

[Diagram: Targeting criteria + User Information = Value]

• Two-stage independent private value model

1. Participate in auction with probability α_{θ}

2. Conditional private value drawn from $V_{\theta} \sim F_{v_{\theta}}(\cdot)$
Solution Concept

Large # of advertisers

Mean Field Approx.

Compete against a stationary distribution of maximum competing bid
Iyer et al. (2012), Gummadi et al. (2012)

Large # of auctions

Fluid Approx.

Satisfy budget constraint in expectation & restrict to state-independent strategies
Gallego and van Ryzin (1994)
Solution Concept

Large # of advertisers

Mean Field Approx.

Compete against a stationary distribution of maximum competing bid

Iyer et al. (2012), Gummadi et al. (2012)

Large # of auctions

Fluid Approx.

Satisfy budget constraint in expectation & restrict to state-independent strategies

Gallego and van Ryzin (1994)

Theorem: Optimal best response bidding strategy is

\[\beta^F_{\theta}(v) = \frac{1}{1 + \mu_\theta} v \]

where \(\mu_\theta \geq 0 \) is the Lagrange multiplier of the budget constraint
Solution Concept

Large # of advertisers

Mean Field Approx.

Compete against a stationary distribution of maximum competing bid
Iyer et al. (2012), Gummadi et al. (2012)

Large # of auctions

Fluid Approx.

Satisfy budget constraint in expectation & restrict to state-independent strategies
Gallego and van Ryzin (1994)

Theorem: Optimal best response bidding strategy is

$$\beta^F_\theta (v) = \frac{1}{1 + \mu_\theta} v$$

where $\mu_\theta \geq 0$ is the Lagrange multiplier of the budget constraint
Fluid Mean Field Equilibrium

\[D \sim \max \left(\{ \beta_{\theta}(V_{\theta}) \}_{\text{matching bidders}}, r \right) \]

Bid functions \(\hat{\beta} \) (multipliers \(\{ \mu_{\theta} \}_{\theta} \))

Best-response

Bid landscape \(D \sim F_d(\cdot; \hat{\beta}) \)
Fluid Mean Field Equilibrium

Theorem
FMFE always exists and is unique (under sufficient conditions).

\[D \sim \max \left(\{ \beta_\theta(V_\theta) \} \text{matching, } r \right) \]

Bid functions \(\hat{\beta} \) (multipliers \(\{ \mu_\theta \} \))

Steady-state

Bid landscape \(D \sim F_d(\cdot; \hat{\beta}) \)

Best-response
Fluid Mean Field Equilibrium

Theorem

FMFE always exists and is unique (under sufficient conditions).

Diagram

- Bid functions $\hat{\beta}$ (multipliers $\{\mu_\theta\}_\theta$)
- Steady-state: $D \sim \max \left(\{\beta_\theta(V_\theta)\}_{\text{matching bidders}}, r \right)$
- Best-response
- Bid landscape $D \sim F_d(\cdot; \hat{\beta})$

Note

FMFE is tractable and behaviorally appealing
Consider a sequence of markets with increasing number of advertisers and number of auctions and constant number of bidders per auction. Then,
FMFE as an Approximation

Consider a sequence of markets with increasing
– number of advertisers and number of auctions
and constant
– number of bidders per auction
– ratio of budget to number of auctions participated
then,

Profits under best response strategy, given others play FMFE

Profits under FMFE strategy, given others play FMFE

→ 1
FMFE as an Approximation

Consider a sequence of markets with increasing
- number of advertisers and number of auctions
and constant
- number of bidders per auction
- ratio of budget to number of auctions participated
then,

\[
\frac{\text{Profits under best response strategy, given others play FMFE}}{\text{Profits under FMFE strategy, given others play FMFE}} \to 1
\]

Moreover, numerical experiments show that FMFE strategy can be optimal best response even with small number of competitors.
Auction Design: Revenue Optimizing Reserve Price (Homogeneous Case)

Given auction design decisions, advertisers respond bidding according to FMFE strategies.
Auction Design: Revenue Optimizing Reserve Price (Homogeneous Case)

Given auction design decisions, advertisers respond bidding according to FMFE strategies.

Theorem

The optimal reserve price is

$$\max\{r_c^*, \bar{r}\}$$

where

r_c^*: optimal reserve static SPA.

\bar{r}: greatest price at which bidders deplete budgets.
Auction Design: Revenue Optimizing Reserve Price
(Homogeneous Case)

Given auction design decisions, advertisers respond bidding according to FMFE strategies.

Theorem

The optimal reserve price is

\[\max\{r_c^*, \bar{r}\} \]

where

- \(r_c^* \): optimal reserve static SPA.
- \(\bar{r} \): greatest price at which bidders deplete budgets.

- Always price higher than in absence of budget.
- Advertisers always bid truthfully at optimal reserve price.
Publisher’s Problem: Back-Testing

Practitioners typically

• use historical bids
• ignore budget constraints
• assume advertisers won’t react to auction changes
Publisher’s Problem: Back-Testing

Practitioners typically
• use historical bids
• ignore budget constraints
• assume advertisers won’t react to auction changes

Back-test on actual AdX data from 1 publisher (Heterogeneous bidders)
Publisher’s Problem: Back-Testing

Optimal reserve considering the strategic response of budget-constrained advertisers

![Graph showing optimal reserve price](image)
Publisher’s Problem: Back-Testing

Optimal reserve considering the strategic response of budget-constrained advertisers

16% profit gain
Conclusions

1. FMFE: New approach to analyze competition between budget-constrained advertisers.

2. Quantify the tradeoffs in the publisher’s revenue maximization problem in AdX. Insight into:
 - Optimal reserve price
 - Optimal allocation between contracts and exchange
 - Extent of information disclosure
Conclusions

1. FMFE: New approach to analyze competition between budget-constrained advertisers.

2. Quantify the tradeoffs in the publisher’s revenue maximization problem in AdX. Insight into:
 – Optimal reserve price
 – Optimal allocation between contracts and exchange
 – Extent of information disclosure

Further Questions:
- Study “throttling” vs bid shading
- Optimal Mechanism Design
- Empirical analysis of bidding behavior and auction design
Auctions for Online Display Advertising Exchanges: Approximations and Design

Gabriel Weintraub
Columbia Business School
Joint work with Santiago Balseiro and Omar Besbes

June 7, 2013
NET Institute Conference
The Advertiser’s Problem

STEP 1. Mean Field Approximation (no Fluid)

- Assume a stationary maximum competing bid $D \sim F_d(\cdot)$
- Find a strategy $\beta_{\theta} : (\text{budget left, time left, valuation}) \rightarrow \text{bid}$

$$\max_{\beta_{\theta}} \mathbb{E} \left[\sum_{i=1}^{M} \text{utility}_i(\beta_{\theta}; F_d) \right]$$

s.t. $\sum_{i=1}^{M} \text{payment}_i(\beta_{\theta}; F_d) \leq b_{\theta}$ (a.s.)

Advertisers need to solve a dynamic program to determine their strategies...
The Advertiser’s Problem

STEP 2. Fluid Mean Field Approximation

- Assume a stationary maximum competing bid $D \sim F_d(\cdot)$
- Satisfy budget in expectation.
- Find a state-independent strategy $\beta_\theta: \text{valuation} \rightarrow \text{bid}$

\[
\max_{\beta_\theta} \mathbb{E}\left[\sum_{i=1}^{M} \text{utility}_i(\beta_\theta; F_d) \right]
\]

s.t. \[
\mathbb{E}\left[\sum_{i=1}^{M} \text{payment}_i(\beta_\theta; F_d) \right] \leq b_\theta
\]

Solution to fluid problem provides near-optimal strategy in real system!
Auction Design Problem

\[
\max_{r, \eta, \iota} \ E\left[\text{revenue} \right] - \ E\left[\text{opportunity cost} \right]
\]

s.t.

\[
\mu = \text{FMFE}(r, \eta, \iota)
\]

where:

- \(r \) : reserve price
- \(\eta \) : allocation to the exchange
- \(\iota \) : information disclosure
An example...

2 types
Budgets:
\(b_\theta = (\$1; \$8) \)
Heterogeneous Advertisers

Type 1: low-budget

Type 2: high-budget

Optimal reserve

r^* (optimal reserve)

η (allocation)
Disclosure of Information: Homogenous Case

The tradeoff

- Less info (ι) → Higher values (V)
 - Thinner markets (α)
- More info (ι)

Theorem

Suppose η fixed. When publisher reacts to thinner markets by setting the optimal reserve price, then disclosing more information improves profits.