Platform Competition under Asymmetric Information

Hanna Halaburda
Harvard Business School

Yaron Yehezkel
Tel-Aviv University

NET Institute Conference, 2012
Motivation

When platforms adopt a new technology, users may not know their valuations from the new technology until they join:

- Operating systems for smartphones (Apple's iOS and Google's Android)
- Videogame consoles (Microsoft's Xbox, Sony's PlayStation, and Nintendo's Wii)
- Tablets and E-books (Amazon's Kindle and Apple's iPad)

We consider platform competition in a two-sided market when agents (buyers and sellers) privately learn their valuations from joining the platforms only after they do so.
Main research question: Can the market implement the welfare-maximizing outcome?

Main results:
1. Platform competition may yield lower social welfare than a monopoly platform
 - Direct consequence of the network effects (the coordination problem among the two sides) and the informational problem
2. Under multi-homing, the market is efficient, but platforms have an incentive to impose exclusive dealing
Literature

- Undifferentiated platforms and dominant firm equilibrium as in Caillaud and Jullien

- Contribution: informational problem
 - Market inefficiency
 - Multi-homing and exclusive dealing
Model

The market:

- Cost: \(t - C(q, c) \)
 - \(c \) – seller’s cost

Incumbent platform

Entrant platform

Seller

Buyer

Utility: \(V(q, \theta) - t \):
- \(q \) – quantity/quality
- \(t \) – payment
- \(\theta \) – buyer’s valuation

Social welfare: \(\arg\max_{q} [V(q, \theta) - C(q, c)] \Rightarrow q^*(\theta, c) \)
Initially, all players do not know θ and c, and share a common prior that $\theta \sim [\theta_0, \theta_1]$ according to $K(\theta)$ and $c \sim [c_0, c_1]$ according to $G(c)$.

Platforms offer contracts: \{(F_B, F_S), (t_B(\theta, c), t_S(\theta, c), q(\theta, c))\}

The buyer and the seller choose simultaneously and non-cooperatively to which platform to join and pay the access fees.

If the buyer and the seller join the same platform they privately learn their WTP (θ) and marginal costs (c).

The buyer and the seller choose a contract from the menu and trade takes place.
Monopoly benchmark

Given that the two sides joined a platform and observed \(\theta \) and \(c \), the monopoly provides the two sides with *ex-post* information rents:

\[
U_B(q, \theta) \equiv E_c \left[\int_{\theta_0}^{\theta} V_\theta(q(\hat{\theta}, c), \hat{\theta})d\hat{\theta} \right], \quad U_S(q, c) \equiv E_\theta \left[\int_c^{c_1} C_c(q(\theta, \hat{c}), \hat{c})d\hat{c} \right]
\]

If there is no coordination problem, the monopoly can charge *ex-ante*:

\[
F_B = E_{\theta c}[U_B(q, \theta)], \quad F_S = E_{\theta c}[U_S(q, c)]
\]

The monopoly earns:

\[
E_{\theta c} [V(q, \theta) - C(q, c)] \downarrow q^*
\]

Without coordination problem among the two sides the market is efficient
Competition

Consider two platforms: incumbent and entrant
No product differentiation
Dominant firm equilibria
The incumbent moves first
Coordination problem:

The incumbent benefits from “favorable beliefs”: each side believes that the other side will join the incumbent
The entrant’s best response – “divide and conquer”

1. Attract the buyer:

\[E_{\theta_c}[U_S(q^E, c)] - F_S^E \geq -\min\{F_S^I, 0\} \]

\[-F_B^E \geq E_{\theta_c}[U_B(q^I, \theta)] - F_B^I \]

The entrant’s profit:

\[\Pi^E(B \mid q^I) = E_{\theta_c}[V(q^E, \theta) - C(q^E, c) - U_B(q^E, \theta)] + F_B^I - E_{\theta_c}[U_B(q^I, \theta)] + \min\{F_S^I, 0\} \]

\[\tilde{q}_B < q^* \]

Strategic terms
2. Attract the seller:

The entrant earns:

\[\Pi^E(S \mid q^I) = E_{0c}[V(q^E, \theta) - C(q^E, c) - U_S(q^E, c)] + F_S^I - E_{0c}[U_S(q^I, c)] + \min\{F_B^I, 0\} \]

\[\tilde{q}_S < q^* \]

In both options, the entrant distorts the quantity downward.
Incumbent’s problem:

$$\max_{q^I, F_B^l, F_S^l} E_{\theta c} \left[V(q^I, \theta) - C(q^I, c) - U_B(q^I, \theta) - U_S(q^I, c) \right] + F_B^l + F_S^l$$

s.t

1) $\Pi^E(B \mid q^I) < 0$

2) $\Pi^E(S \mid q^I) < 0$

3) $E_{\theta c}[U_B(q^I, \theta)] - F_B^l \geq 0$

4) $E_{\theta c}[U_S(q^I, c)] - F_S^l \geq 0$
Δ: measures the gap between the seller’s and buyer’s information rents
- If Δ > 0: the informational problem is more significant on the seller’s side
- If Δ < 0: the informational problem is more significant on the buyer’s side

Proposition 1: Suppose that Δ > 0 (the case of Δ < 0 is symmetric):

- Both platforms charge a high access fees from the seller and compete on attracting the buyer
- The incumbent wins and sets the **efficient** \(q^I = q^* \)

- The incumbent attracts the buyer while the entrant attracts the seller
- The incumbent wins but **distorts** \(q^I = \tilde{q}_B < q^* \)
Multi-homing and exclusive contracts

- Suppose that the seller can join both platforms:
 - Developers can develop applications for both Android and iOS
 - Users can only carry one handset
- For all Δ, both platforms compete on the buyer
- The incumbent sets the efficient $q^I = q^*$ for all Δ

If platforms can impose exclusive dealing:
- If Δ is low, the entrant can attract the seller and impose exclusive dealing
- In equilibrium:
 - The incumbent *distorts* $q_I = \tilde{q}_I < q^*$
 - At least one platform imposes exclusive dealing
The paper considers platform competition in a two-sided market when agents are ex-ante uninformed and ex-post privately informed

Main results:
1. A monopoly platform implements the first-best level of trade
2. Competition may create a market failure
3. Under multi-homing, competition is efficient, but platforms will impose exclusive dealing if they can do so